Text page

Os ensaios dos riscos eletrostáticos em atmosferas explosivas

Como deve ser preparada a amostra de ensaio da resistência superficial? O que deve conter o relatório de ensaio? Quais os conceitos da resistência de fuga? Como devem ser executados os ensaios de calçados em uso? Essas indagações estão sendo exibidas na NBR IEC 60079-32-2 de 09/2020 - Atmosferas explosivas - Parte 32-2: Riscos eletrostáticos — Ensaios.

07/10/2020 - Equipe Target

NBR IEC 60079-32-2 de 09/2020 - Atmosferas explosivas - Parte 32-2: Riscos eletrostáticos — Ensaios

A NBR IEC 60079-32-2 de 09/2020 - Atmosferas explosivas - Parte 32-2: Riscos eletrostáticos — Ensaios descreve os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática. Destina-se à utilização em uma avaliação de risco dos perigos eletrostáticos ou na preparação de normas para famílias de produtos ou de produtos dedicados para máquinas ou equipamentos elétricos ou não elétricos.

O objetivo desta parte é fornecer os métodos de ensaio padronizados utilizados para o controle da eletricidade estática, como resistência de superfície, resistência de fuga para terra, resistividade em poeiras, condutividade de líquidos, capacitância e avaliação da capacidade de gerar uma ignição de descargas eletrostáticas provocadas. Destina-se especialmente para utilização com as normas existentes da série NBR IEC 60079. A ABNT IEC TS 60079-32-1, Atmosferas explosivas – Parte 32-1: Riscos eletrostáticos, orientação, foi publicada em 2020. Esta norma não se destina a substituir normas que abrangem produtos específicos e situações industriais.

Esta parte apresenta o mais recente estado do conhecimento que pode, no entanto, diferir ligeiramente dos requisitos de outras normas, especialmente no que concerne a ensaios climáticos. Quando um requisito desta norma conflitar com um requisito especificado na NBR IEC 60079-0, para evitar a possibilidade de reensaiar equipamentos previamente aprovados, o requisito da NBR IEC 60079-0 se aplica apenas para equipamentos dentro do escopo da NBR IEC 60079-0. Em todos os outros casos, aplicam-se os requisitos indicados nesta parte.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser preparada a amostra de ensaio da resistência superficial?

O que deve conter o relatório de ensaio?

Quais os conceitos da resistência de fuga?

Como devem ser executados os ensaios de calçados em uso?

As variações nos resultados da medição de propriedades eletrostáticas de materiais são devidas principalmente a variações na amostra (por exemplo, superfícies e geometria não homogêneas e o estado do material) em vez de incertezas na tensão, corrente, geometria do eletrodo ou incerteza do dispositivo de medição. Isto porque as propriedades eletrostáticas são fortemente influenciadas por diferenças muito pequenas, de modo que os efeitos estatísticos desempenham um papel importante. Por exemplo, na ASTM E582, a energia mínima de ignição (MIE – Minimum Ignition Energy) de uma atmosfera de gás explosivo é definida por 100 ou 1.000 não ignições. Isto não exclui, no entanto, que o ensaio 1 001 possa causar uma ignição.

Devido a este efeito estatístico, a precisão e a reprodutibilidade das propriedades eletrostáticas são limitadas pela dispersão estatística. Normalmente, a precisão e a reprodutibilidade das medições eletrostáticas são de cerca de 20% a 30%. Isto é muito mais alto do que para uma medição elétrica típica, que é inferior a 1 %. Por esta razão, os limiares do limite eletrostático contêm certa margem de segurança para compensar a dispersão estatística ocorrida.

Pode ser difícil compreender que a ocorrência da dispersão estatística pode não ser minimizada por meio de melhoria da qualidade dos ensaios. No entanto, essa situação tem que ser aceita, lembrando que os ensaios eletrostáticos contêm margens de segurança adequadas, especificamente para compensar este efeito. Os processos de fabricação (por exemplo, moldagem, extrusão etc.) podem alterar as propriedades eletrostáticas dos materiais.

Recomenda-se, portanto, ensaiar produtos acabados, quando possível, em vez de os materiais dos quais os produtos são feitos. Para obter resultados comparáveis em todo o mundo para medições laboratoriais, convém que as amostras sejam aclimatadas e medidas em umidade relativa e temperatura declaradas (por pelo menos 24 h a (23 ± 2) °C e (25 ± 5) % de umidade relativa). Em locais que podem apresentar níveis mais baixos ou mais altos de umidade e temperatura, um valor adicional na umidade relativa e na temperatura local mais alta ou mais baixa pode ser aceitáveis (por exemplo, 40 ± 2) °C e (90 ± 5)% de umidade relativa para climas tropicais e (23 ± 2) °C e (15 ± 5) % de umidade relativa para locais com climas muito frios).

De forma a evitar erros de medição causados por um comportamento diferente da histerese da umidade do material, convém que a amostra seja inicialmente seca e depois aclimatada ao clima específico. Em algumas outras normas, por exemplo, NBR IEC 60079-0, diferentes valores-limite com base em medições feitas a 50% de umidade relativa ou 30% de umidade relativa foram especificados no passado na ausência de uma câmara efetiva desumidificadora. A experiência mostra que os resultados e medição neste clima não são obtidos com o mesmo grau de consistência que aqueles medidos de acordo com esta norma.

No entanto, pode ser necessário utilizar o clima especificado em outras normas para manter a continuidade do equipamento previamente avaliado. Pode ser difícil aplicar os métodos de ensaio exatamente como especificados nesta norma, a todos os tipos de equipamentos e em todas as situações. Se este for o caso, o relatório de ensaio deve indicar claramente quais partes desta norma foram aplicadas em sua totalidade e quais partes desta norma foram aplicadas em parte. Isto deve ser acompanhado de uma justificativa técnica dos motivos pelos quais a norma não pôde ser aplicada em sua totalidade e da equivalência de quaisquer outros métodos que tenham sido aplicados em comparação com os métodos de ensaio especificados nesta norma.

Os métodos de ensaio especificados nesta norma envolvem a utilização de fontes de alimentação de alta tensão e, em alguns ensaios, gases inflamáveis que podem apresentar perigo se manuseados incorretamente. Os usuários desta norma são alertados a realizar avaliações de risco adequadas e a considerar os regulamentos locais antes de realizar qualquer um dos procedimentos de ensaio. Em relação à resistência superficial, as superfícies que têm uma resistência superficial suficientemente baixa, de acordo com 3.11, podem não ser carregadas eletrostaticamente quando em contato com a terra. Por esta razão, a resistência da superfície é uma propriedade eletrostática básica relativa à capacidade dos materiais de dissipar a carga eletrostática por condução. Como as resistências superficiais geralmente aumentam com a diminuição da umidade relativa, é necessária uma baixa umidade relativa durante a medição para reproduzir as condições com o pior caso.

A IEC 60093 e IEC 61340-2-3 descrevem métodos de medição da resistência superficial e volumétrica e a resistividade de materiais sólidos planos. A IEC 61340-4-10 é um método alternativo para medir a resistência superficial. No entanto, muitas vezes estes métodos podem não ser aplicados devido ao tamanho e forma dos materiais, especialmente quando incorporados em equipamentos e aparelhos. Por esta razão, o método de ensaio para medições de resistência de materiais que não são planos e produtos com pequenas estruturas especificadas na IEC 61340-2-3, ou o método a seguir pode ser utilizado como uma alternativa adequada.

A superfície é colocada em contato com dois eletrodos condutivos de comprimento e distância definidos e a resistência entre os dois eletrodos é medida. Uma vez que as resistências elevadas geralmente diminuem com o aumento da tensão, a tensão aplicada deve ser aumentada para pelo menos 500 V, preferencialmente 1.000 V, para resistências muito altas. Os conhecimentos mais recentes indicam que pode ser benéfico medir resistências elevadas a 10 kV. No entanto, neste caso, a centelha tem que ser evitada, por exemplo, por uma espuma isolante entre os eletrodos, e os critérios de aceitação têm que ser modificados.

Quando camadas finas isolantes são montadas sobre um material mais condutivo, a tensão aplicada pode queimar totalmente o material inferior, e os resultados obtidos são inconclusivos. Os materiais não homogêneos, particularmente tecidos, podem apresentar resultados diferentes quando medidos em diferentes direções. Isto pode ser evitado utilizando-se um sistema de eletrodo de anel concêntrico, de acordo com a IEC 61340-2-3 ou ISO 14309. Eletrodos de tiras de borracha condutiva macia são preferidos aos eletrodos de tinta prateada para limitar a interação química não desejada da superfície.

No caso de amostras irregulares, os eletrodos de tinta prateada são preferidos aos eletrodos macios, devido à sua melhor adaptação à geometria irregular da amostra. O critério de >25 mm para a área ao redor dos eletrodos, conforme indicado na figura 1, disponível na norma, aplica-se somente às folhas de ensaio, podendo ser ignorado no caso de produtos reais. Os eletrodos são conectados a um teraohmímetro. Um eletrodo de proteção pode ser colocado sobre os eletrodos de medição, para minimizar o ruído elétrico. Durante o ensaio, a tensão deve ser suficientemente estável para que a corrente de carregamento, devida à flutuação de tensão, seja insignificante em comparação com a corrente que flui através da amostra de ensaio.

A precisão do teraohmímetro deve ser verificada regularmente com várias resistências de valores ôhmicos conhecidos em um intervalo de 1 MΩ a 1 TΩ. O teraohmímetro deve ler a resistência dentro da sua precisão especificada. A geometria dos eletrodos condutivos de borracha ou espuma também deve ser regularmente checada medindo a sua marca impressa. Se a força no eletrodo é maior do que 20 N para alcançar a mínima resistência medida, os eletrodos de borracha devem ser substituídos por outros mais macios. A resistência superficial deve ser medida na região da amostra real se o tamanho permitir, ou em uma amostra de ensaio que compreende uma placa retangular com dimensões de acordo com a figura 1.

A amostra de ensaio deve ter uma superfície intacta e limpa. Como alguns solventes podem deixar resíduos condutivos na superfície ou podem afetar negativamente as propriedades eletrostáticas da superfície, é melhor limpar a superfície apenas com uma escova. Isto é especialmente importante nos casos em que a superfície for tratada com agentes antiestáticos especiais. Se, entretanto, houver uma impressão digital ou outra impureza visível na superfície e não forem utilizados agentes antiestáticos especiais na superfície, a amostra de ensaio deve ser limpa com 2-propanol (álcool isopropílico) ou outro solvente adequado que não afete o material da amostra de ensaio e os eletrodos, e que sequem no ar.

A amostra de ensaio deve ser condicionada por pelo menos 24 h em (23 ± 2) °C e (25 ± 5) % de umidade relativa sem ser tocada novamente por mãos desprotegidas. No caso de invólucro de equipamentos elétricos, as condições climáticas são dadas na NBR IEC 60079-0 e a tensão de 500 V do ensaio deve ser utilizada para ser compatível com os históricos das medições. Deve-se ressaltar que o gás inflamável é gerado pela mistura do gás de ensaio (com pureza mínima de 99,5 %) com o ar. O ar utilizado deve conter (21,0 ± 0,5) % de oxigênio e (79,0 ± 0,5) % de nitrogênio. O equipamento de controle do gás e mistura é utilizado para direcionar o gás, na proporção apropriada, para a sonda de ignição. Os gases de ensaio e sua concentração em volume a ser utilizada indicada na NBR IEC 60079-7 é apresentada na tabela abaixo.

Clique na imagem acima para uma melhor visualização

 

O controle da mistura de gás dentro das tolerâncias especificadas deve ser verificado utilizando, por exemplo, um analisador de gás retirando amostras da linha de fornecimento da mistura de gás. Se uma mistura de gás diferente daquela especificada na tabela acima for utilizada, a mínima energia de ignição da mistura de gás deve ser verificada utilizando o método da ASTM E582. É conveniente utilizar cilindros de gás comprimido para o fornecimento de gás, mas outras fontes de fornecimento podem ser utilizadas. Se necessário, filtros de peneira molecular devem ser utilizados para assegurar que os gases tenham baixo teor de umidade.

Isto é importante, por exemplo, quando se utiliza ar diretamente de um compressor. Cada fonte de gás é controlada e monitorada utilizando medidores de vazão e válvulas. A combinação das taxas de vazão de todos os gases por uma sonda de ignição deve ser (0,21 ± 0,04) L/s. Uma válvula de fechamento de ação rápida é utilizada para interromper o fluxo de gás de ensaio quando ocorre a ignição. A válvula de fechamento deve parar o fornecimento do gás de ensaio enquanto deixa o ar fluir livremente para fornecer resfriamento e secagem da sonda de ignição após a ignição ter ocorrido. O tipo e a localização da válvula de fechamento devem ser selecionados de acordo com o projeto do equipamento completo.

FONTE: Equipe Target

Baseado nos documentos visitados

Normas recomendadas para você

Atmosferas explosivas - Parte 39: Sistemas intrinsecamente seguros com limitação de duração de centelha controlada eletronicamente
ABNT IEC/TS60079-39 de 01/2019

Atmosferas explosivas - Parte 39: Sistemas intrinsecamente seguros com limitação de duração de centelha controlada eletronicamente

Atmosfera explosiva - Parte 29-1: Detectores de gás - Requisitos de desempenho de detectores para gases inflamáveis
NBRIEC60079-29-1 de 10/2008

Atmosfera explosiva - Parte 29-1: Detectores de gás - Requisitos de desempenho de detectores para gases inflamáveis

Atmosferas explosivas - Parte 29-2: Detectores de gases - Seleção, instalação, utilização e manutenção de detectores para gases inflamáveis e oxigênio
NBRIEC60079-29-2 de 03/2011

Atmosferas explosivas - Parte 29-2: Detectores de gases - Seleção, instalação, utilização e manutenção de detectores para gases inflamáveis e oxigênio

Atmosferas explosivas - Parte 1: Proteção de equipamento por invólucro à prova de explosão “d”
NBRIEC60079-1 de 06/2016

Atmosferas explosivas - Parte 1: Proteção de equipamento por invólucro à prova de explosão “d”

Atmosferas explosivas - Parte 0: Equipamentos - Requisitos gerais
NBRIEC60079-0 de 11/2020

Atmosferas explosivas - Parte 0: Equipamentos - Requisitos gerais

Atmosferas explosivas - Parte 26: Equipamento com elementos de separação ou níveis de proteção combinados
NBRIEC60079-26 de 05/2022

Atmosferas explosivas - Parte 26: Equipamento com elementos de separação ou níveis de proteção combinados

Atmosferas explosivas - Parte 33: Proteção de equipamentos por proteção especial “s”
NBRIEC60079-33 de 04/2015

Atmosferas explosivas - Parte 33: Proteção de equipamentos por proteção especial “s”

Atmosferas explosivas - Parte 25: Sistemas elétricos intrinsecamente seguros
NBRIEC60079-25 de 08/2021

Atmosferas explosivas - Parte 25: Sistemas elétricos intrinsecamente seguros

Equipamentos elétricos para atmosferas explosivas. - Parte 16: Ventilação artificial para a proteção de casa de analisadores
ABNT IEC/TR60079-16 de 02/2009

Equipamentos elétricos para atmosferas explosivas. - Parte 16: Ventilação artificial para a proteção de casa de analisadores

Atmosferas explosivas - Parte 2: Proteção de equipamento por invólucro pressurizado “p”
NBRIEC60079-2 de 10/2016

Atmosferas explosivas - Parte 2: Proteção de equipamento por invólucro pressurizado “p”

Atmosferas explosivas - Parte 35-2: Lanternas para capacetes para utilização em minas sujeitas a grisu — Desempenho e outros requisitos relacionados à segurança
NBRIEC60079-35-2 de 06/2013

Atmosferas explosivas - Parte 35-2: Lanternas para capacetes para utilização em minas sujeitas a grisu — Desempenho e outros requisitos relacionados à segurança

Atmosferas explosivas - Parte 32-2: Riscos eletrostáticos — Ensaios
NBRIEC60079-32-2 de 09/2020

Atmosferas explosivas - Parte 32-2: Riscos eletrostáticos — Ensaios

Atmosferas explosivas - Parte 46: Conjunto de equipamentos pré-montados
ABNT IEC/TS60079-46 de 11/2018

Atmosferas explosivas - Parte 46: Conjunto de equipamentos pré-montados

Atmosferas explosivas - Parte 32-1: Riscos eletrostáticos, orientações
ABNT IEC/TS60079-32-1 de 01/2020

Atmosferas explosivas - Parte 32-1: Riscos eletrostáticos, orientações

Atmosferas explosivas - Parte 35-1: Lanternas para capacetes para utilização em minas sujeitas a grisu — Requisitos gerais — Construção e ensaios em relação ao risco de explosão
NBRIEC60079-35-1 de 06/2013

Atmosferas explosivas - Parte 35-1: Lanternas para capacetes para utilização em minas sujeitas a grisu — Requisitos gerais — Construção e ensaios em relação ao risco de explosão

Atmosferas explosivas - Parte 31: Proteção de equipamentos contra ignição de poeira por invólucros “t”
NBRIEC60079-31 de 06/2022

Atmosferas explosivas - Parte 31: Proteção de equipamentos contra ignição de poeira por invólucros “t”

Atmosferas explosivas - Parte 40: Requisitos para selagem do processo entre fluidos inflamáveis do processo e sistema elétricos
ABNT IEC/TS60079-40 de 12/2016

Atmosferas explosivas - Parte 40: Requisitos para selagem do processo entre fluidos inflamáveis do processo e sistema elétricos

Atmosferas explosivas - Parte 29-3: Detectores de gás — Orientações sobre segurança funcional de sistemas fixos de detecção de gases
NBRIEC60079-29-3 de 10/2019

Atmosferas explosivas - Parte 29-3: Detectores de gás — Orientações sobre segurança funcional de sistemas fixos de detecção de gases

Atmosferas explosivas - Parte 28: Proteção de equipamentos e de sistemas de transmissão que utilizam radiação óptica
NBRIEC60079-28 de 11/2016

Atmosferas explosivas - Parte 28: Proteção de equipamentos e de sistemas de transmissão que utilizam radiação óptica